A Theoretical Interpretation for Layered Neural Network Classifier.
نویسندگان
چکیده
منابع مشابه
A Layered Approach for Intrusion Detection Using Fuzzy Artmap Neural Network Classifier
Intrusion Detection Systems (IDS) is a key part of system defense, where it identifies abnormal activities happening in a computer system. In general, the traditional intrusion detection relies on the extensive knowledge of security experts, in particular, on their familiarity with the computer system to be protected. To reduce this dependence, various data-mining, soft-computing and machine le...
متن کاملA Neural Network Classifier for Occluded Images
This paper proposes a neural network classifier which can automatically detect the occluded regions in the given image and replace that regions with the estimated values. An auto-associative memory is used to detect outliers such as pixels in the occluded regions. Certainties of each pixels are estimated by comparing the input pixels with the outputs of the auto-associative memory. The input va...
متن کاملSignal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملClassifier Based Text Mining for Neural Network
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the netwo...
متن کاملA self-organizing HCMAC neural-network classifier
This paper presents a self-organizing hierarchical cerebellar model arithmetic computer (HCMAC) neural-network classifier, which contains a self-organizing input space module and an HCMAC neural network. The conventional CMAC can be viewed as a basis function network (BFN) with supervised learning, and performs well in terms of its fast learning speed and local generalization capability for app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Japan society of photogrammetry and remote sensing
سال: 1996
ISSN: 0285-5844,1883-9061
DOI: 10.4287/jsprs.35.4_4